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Abstract 
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Artificial intelligence research has foundered on the issue of representation. When intellig- 
ence is approached in an incremental manner, with strict reliance on interfacing to the real 
world through perception and action, reliance on representation disappears. In this paper 
we outline our approach to incrementally building complete intelligent Creatures. The 
fundamental decomposition of the intelligent system is not into independent information 
processing units which must interface with each other via representations. Instead, the 
intelligent system is decomposed into independent and parallel activity producers which all 
interface directly to the world through perception and action, rather than interface to each 
other particularly much. The notions of central and peripheral systems evaporate--  
everything is both central and peripheral. Based on these principles we have built a very 
successful series of mobile robots which operate without supervision as Creatures in 
standard office environments. 

I. Introduction 

Artificial intelligence started as a field whose goal was to replicate human 
level intelligence in a machine. 

Early hopes diminished as the magnitude and difficulty of that goal was 
appreciated. Slow progress was made over the next 25 years in demonstrating 
isolated aspects of intelligence. Recent work has tended to concentrate on 
commercializable aspects of "intelligent assistants" for human workers. 
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No one talks about replicating the full gamut of human intelligence any 
more. Instead we see a retreat into specialized subproblems, such as ways to 
represent knowledge, natural language understanding, vision or even more 

specialized areas such as truth maintenance systems or plan verification. All the 
work in these subareas is benchmarked against the sorts of tasks humans do 
within those areas. Amongst the dreamers still in the field of AI (those not 
dreaming about dollars, that is), there is a feeling that one day all these pieces 
will all fall into place and we will see " t ruly"  intelligent systems emerge. 

However,  I, and others, believe that human level intelligence is too complex 
and little understood to be correctly decomposed into the right subpieces at the 
moment  and that even if we knew the subpieces we still wouldn't  know the 
right interfaces between them. Furthermore,  we will never understand how to 
decompose human level intelligence until we've had a lot of practice with 
simpler level intelligences. 

In this paper I therefore argue for a different approach to creating artificial 
intelligence: 

• We must incrementally build up the capabilities of intelligent systems, 
having complete systems at each step of the way and thus automatically 
ensure that the pieces and their interfaces are valid. 

• At each step we should build complete intelligent systems that we let loose 
in the real world with real sensing and real action. Anything less provides 
a candidate with which we can delude ourselves. 

We have been following this approach and have built a series of autonomous 
mobile robots. We have reached an unexpected conclusion (C) and have a 
rather radical hypothesis (H).  

(C) When we examine very simple level intelligence we find that explicit 
representations and models of the world simply get in the way. It turns 
out to be better  to use the world as its own model. 

(H)  Representation is the wrong unit of abstraction in building the bulkiest 
parts of intelligent systems. 

Representation has been the central issue in artificial intelligence work over the 
last 15 years only because it has provided an interface between otherwise 
isolated modules and conference papers. 

2. The evolution of intelligence 

We already have an existence proof  of the possibility of intelligent entities: 
human beings. Additionally, many animals are intelligent to some degree. 
(This is a subject of intense debate,  much of which really centers around a 
definition of intelligence.) They have evolved over the 4.6 billion year history 
of the earth. 
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It is instructive to reflect on the way in which earth-based biological 
evolution spent its time. Single-cell entities arose out of the primordial soup 
roughly 3.5 billion years ago. A billion years passed before photosynthetic 
plants appeared. After almost another billion and a half years, around 550 
million years ago, the first fish and vertebrates arrived, and then insects 450 
million years ago. Then things started moving fast. Reptiles arrived 370 million 
years ago, followed by dinosaurs at 330 and mammals at 250 million years ago. 
The first primates appeared 120 million years ago and the immediate pre- 
decessors to the great apes a mere 18 million years ago. Man arrived in roughly 
his present form 2.5 million years ago. He invented agriculture a mere 19,000 
years ago, writing less than 5000 years ago and "expert" knowledge only over 
the last few hundred years. 

This suggests that problem solving behavior, language, expert knowledge 
and application, and reason, are all pretty simple once the essence of being and 
reacting are available. That essence is the ability to move around in a dynamic 
environment, sensing the surroundings to a degree sufficient to achieve the 
necessary maintenance of life and reproduction. This part of intelligence is 
where evolution has concentrated its time--it is much harder. 

I believe that mobility, acute vision and the ability to carry out survival- 
related tasks in a dynamic environment provide a necessary basis for the 
development of true intelligence. Moravec [11] argues this same case rather 
eloquently. 

Human level intelligence has provided us with an existence proof but we 
must be careful about what the lessons are to be gained from it. 

2.1. A story 

Suppose it is the 1890s. Artificial flight is the glamor subject in science, 
engineering, and venture capital circles. A bunch of AF researchers are 
miraculously transported by a time machine to the 1980s for a few hours. They 
spend the whole time in the passenger cabin of a commercial passenger Boeing 
747 on a medium duration flight. 

Returned to the 1890s they feel vigorated, knowing that AF is possible on a 
grand scale. They immediately set to work duplicating what they have seen. 
They make great progress in designing pitched seats, double pane windows, 
and know that if only they can figure out those weird "plastics" they will have 
their grail within their grasp. (A few connectionists amongst them caught a 
glimpse of an engine with its cover off and they are preoccupied with 
inspirations from that experience.) 

3. Abstract ion as a dangerous  weapon  

Artificial intelligence researchers are fond of pointing out that AI is often 
denied its rightful successes. The popular story goes that when nobody has any 
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good idea of how to solve a particular sort of problem (e.g. playing chess) it is 
known as an AI problem. When an algorithm developed by AI researchers 
successfully tackles such a problem, however, AI detractors claim that since 
the problem was solvable by an algorithm, it wasn't really an AI problem after 
all. Thus AI never has any successes. But have you ever heard of an AI 
failure? 

I claim that AI researchers are guilty of the same (self) deception. They 
partition the problems they work on into two components.  The AI component ,  
which they solve, and the non-AI component  which they don' t  solve. Typically, 
AI "succeeds" by defining the parts of the problem that are unsolved as not 
AI. The principal mechanism for this partitioning is abstraction. Its application 
is usually considered part of good science, not, as it is in fact used in AI, as a 
mechanism for self-delusion. In AI, abstraction is usually used to factor out all 
aspects of perception and motor  skills. I argue below that these are the hard 
problems solved by intelligent systems, and further that the shape of solutions 
to these problems constrains greatly the correct solutions of the small pieces of 
intelligence which remain. 

Early work in AI concentrated on games, geometrical problems, symbolic 
algebra, theorem proving, and other  formal systems (e.g. [6, 9]). In each case 
the semantics of the domains were fairly simple. 

In the late sixties and early seventies the blocks world became a popular 
domain for AI research. It had a uniform and simple semantics. The key to 
success was to represent the state of the world completely and explicitly. 
Search techniques could then be used for planning within this well-understood 
world. Learning could also be done within the blocks world; there were only a 
few simple concepts worth learning and they could be captured by enumerating 
the set of subexpressions which must be contained in any formal description of 
a world including an instance of the concept. The blocks world was even used 
for vision research and mobile robotics, as it provided strong constraints on the 
perceptual processing necessary [12]. 

Eventually criticism surfaced that the blocks world was a " toy world" and 
that within it there were simple special purpose solutions to what should be 
considered more general problems. At the same time there was a funding crisis 
within AI (both in the US and the UK, the two most active places for AI 
research at the time). AI researchers found themselves forced to become 
relevant. They moved into more complex domains, such as trip planning, going 
to a restaurant,  medical diagnosis, etc. 

Soon there was a new slogan: " G o o d  representation is the key to AI"  (e.g. 
conceptually efficient programs in [2]). The idea was that by representing only 
the pertinent facts explicitly, the semantics of a world (which on the surface 
was quite complex) were reduced to a simple closed system once again. 
Abstraction to only the relevant details thus simplified the problems. 

Consider a chair for example. While the following two characterizations are 
true: 
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(CAN (SIT-ON PERSON CHAIR)), (CAN (STAND-ON PERSON CHAIR)), 

there is much more to the concept of a chair. Chairs have some flat (maybe) 
sitting place, with perhaps a back support. They have a range of possible sizes, 
requirements on strength, and a range of possibilities in shape. They often 
have some sort of covering material, unless they are made of wood, metal or 
plastic. They sometimes are soft in particular places. They can come from a 
range of possible styles. In particular the concept of what is a chair is hard to 
characterize simply. There is certainly no AI vision program which can find 
arbitrary chairs in arbitrary images; they can at best find one particular type of 
chair in carefully selected images. 

This characterization, however, is perhaps the correct AI representation of 
solving certain problems; e.g., a person sitting on a chair in a room is hungry 
and can see a banana hanging from the ceiling just out of reach. Such problems 
are never posed to AI systems by showing them a photo of the scene. A person 
(even a young child) can make the right interpretation of the photo and suggest 
a plan of action. For AI planning systems however, the experimenter is 
required to abstract away most of the details to form a simple description in 
terms of atomic concepts such as PERSON, CHAIR and BANANAS. 

But this abstraction is the essence of intelligence and the hard part of the 
problems being solved. Under the current scheme the abstraction is done by 
the researchers leaving little for the AI programs to do but search. A truly 
intelligent program would study the photograph, perform the abstraction and 
solve the problem. 

The only input to most AI programs is a restricted set of simple assertions 
deduced from the real data by humans. The problems of recognition, spatial 
understanding, dealing with sensor noise, partial models, etc. are all ignored. 
These problems are relegated to the realm of input black boxes. Psycho- 
physical evidence suggests they are all intimately tied up with the representa- 
tion of the world used by an intelligent system. 

There is no clean division between perception (abstraction) and reasoning in 
the real world. The brittleness of current AI systems attests to this fact. For 
example, MYCIN [13] is an expert at diagnosing human bacterial infections, but 
it really has no model of what a human (or any living creature) is or how they 
work, or what are plausible things to happen to a human. If told that the aorta 
is ruptured and the patient is losing blood at the rate of a pint every minute, 
MYCIN will try to find a bacterial cause of the problem. 

Thus, because we still perform all the abstractions for our programs, most 
AI work is still done in the blocks world. Now the blocks have slightly different 
shapes and colors, but their underlying semantics have not changed greatly. 

It could be argued that performing this abstraction (perception) for AI 
programs is merely the normal reductionist use of abstraction common in all 
good science. The abstraction reduces the input data so that the program 
experiences the same perceptual world (Merkwelt in [15]) as humans. Other 



144 R.A.  Brooks 

(vision) researchers will independently fill in the details at some other time and 
place. I object to this on two grounds. First, as Uexk/ill and others have 
pointed out, each animal species, and clearly each robot species with their own 
distinctly non-human sensor suites, will have their own different Merkwelt. 
Second, the Merkwelt we humans provide our programs is based on our own 
introspection. It is by no means clear that such a Merkwelt is anything like what 
we actually use internally--i t  could just as easily be an output coding for 
communication purposes (e.g., most humans go through life never realizing 
they have a large blind spot almost in the center of their visual fields). 

The first objection warns of the danger that reasoning strategies developed 
for the human-assumed Merkwelt may not be valid when real sensors and 
perception processing is used. The second objection says that even with human 
sensors and perception the Merkwelt may not be anything like that used by 
humans. In fact, it may be the case that our introspective descriptions of our 
internal representations are completely misleading and quite different from 
what we really use. 

3.1. A continuing story 

Meanwhile our friends in the 1890s are busy at work on their AF machine. 
They have come to agree that the project is too big to be worked on as a single 
entity and that they will need to become specialists in different areas. After  all, 

they had asked questions of fellow passengers on their flight and discovered 
that the Boeing Co. employed over 6000 people to build such an airplane. 

Everyone is busy but there is not a lot of communication between the 
groups. The people making the passenger seats used the finest solid steel 
available as the framework. There  was some muttering that perhaps they 
should use tubular steel to save weight, but the general consensus was that if 
such an obviously big and heavy airplane could fly then clearly there was no 
problem with weight. 

On their observation flight none of the original group managed to get a 
glimpse of the driver's seat, but they have done some hard thinking and think 
they have established the major  constraints on what should be there and how it 
should work. The pilot, as he will be called, sits in a seat above a glass floor so 
that he can see the ground below so he will know where to land. There are 
some side mirrors so he can watch behind for other  approaching airplanes. His 
controls consist of a foot pedal to control speed (just as in these newfangled 
automobiles that are starting to appear), and a steering wheel to turn left and 
right. In addition, the wheel stem can be pushed forward and back to make the 
airplane go up and down. A clever arrangement of pipes measures airspeed of 
the airplane and displays it on a dial. What more could one want? Oh yes. 
There 's  a rather nice setup of louvers in the windows so that the driver can get 
fresh air without getting the full blast of the wind in his face. 
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An interesting sidelight is that all the researchers have by now abandoned 
the study of aerodynamics. Some of them had intensely questioned their fellow 
passengers on this subject and not one of the modern flyers had known a thing 
about it. Clearly the AF researchers had previously been wasting their time in 
its pursuit. 

4. Incremental intelligence 

I wish to build completely autonomous mobile agents that co-exist in the 
world with humans, and are seen by those humans as intelligent beings in their 
own right. I will call such agents Creatures. This is my intellectual motivation. I 
have no particular interest in demonstrating how human beings work, although 
humans, like other animals, are interesting objects of study in this endeavor as 
they are successful autonomous agents. I have no particular interest in applica- 
tions; it seems clear to me that if my goals can be met then the range of 
applications for such Creatures will be limited only by our (or their) imagina- 
tion. I have no particular interest in the philosophical implications of Crea- 
tures, although clearly there will be significant implications. 

Given the caveats of the previous two sections and considering the parable of 
the AF researchers, I am convinced that I must tread carefully in this endeavor 
to avoid some nasty pitfalls. 

For the moment then, consider the problem of building Creatures as an 
engineering problem. We will develop an engineering methodology for building 
Creatures. 

First, let us consider some of the requirements for our Creatures. 

• A Creature must cope appropriately and in a timely fashion with changes 
in its dynamic environment. 

• A Creature should be robust with respect to its environment; minor 
changes in the properties of the world should not lead to total collapse of 
the Creature's behavior; rather one should expect only a gradual change in 
capabilities of the Creature as the environment changes more and more. 

• A Creature should be able to maintain multiple goals and, depending on 
the circumstances it finds itself in, change which particular goals it is 
actively pursuing; thus it can both adapt to surroundings and capitalize on 
fortuitous circumstances. 

• A Creature should do something in the world; it should have some 
purpose in being. 

Now, let us consider some of the valid engineering approaches to achieving 
these requirements. As in all engineering endeavors it is necessary to decom- 
pose a complex system into parts, build the parts, then interface them into a 
complete system. 
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4.1. Decomposition by function 

Perhaps the strongest traditional notion of intelligent systems (at least 
implicitly among AI workers) has been of a central system, with perceptual 
modules as inputs and action modules as outputs. The perceptual modules 
deliver a symbolic description of the world and the action modules take a 
symbolic description of desired actions and make sure they happen in the 
world. The central system then is a symbolic information processor. 

Traditionally, work in perception (and vision is the most commonly studied 
form of perception) and work in central systems has been done by different 
researchers and even totally different research laboratories. Vision workers are 
not immune to earlier criticisms of AI workers. Most vision research is 
presented as a transformation from one image representation (e.g., a raw grey 
scale image) to another  registered image (e.g., an edge image). Each group, AI 

and vision, makes assumptions about the shape of the symbolic interfaces. 
Hardly anyone has ever connected a vision system to an intelligent central 
system. Thus the assumptions independent researchers make are not forced to 
be realistic. There is a real danger from pressures to neatly circumscribe the 
particular piece of research being done. 

The central system must also be decomposed into smaller pieces. We see 
subfields of artificial intelligence such as "knowledge representat ion",  "learn- 
ing", "planning",  "qualitative reasoning",  etc. The interfaces between these 
modules are also subject to intellectual abuse. 

When researchers working on a particular module get to choose both the 
inputs and the outputs that specify the module requirements I believe there is 
little chance the work they do will fit into a complete intelligent system. 

This bug in the functional decomposition approach is hard to fix. One needs 
a long chain of modules to connect perception to action. In order to test any of 
them they all must first be built. But until realistic modules are built it is highly 
unlikely that we can predict exactly what modules will be needed or what 
interfaces they will need. 

4.2. Decomposition by activity 

An alternative decomposition makes no distinction between peripheral 
systems, such as vision, and central systems. Rather  the fundamental slicing up 
of an intelligent system is in the orthogonal direction dividing it into activity 
producing subsystems. Each activity, or behavior producing system individually 
connects sensing to action. We refer to an activity producing system as a layer. 
An activity is a pattern of interactions with the world. Another  name for our 
activities might well be skill, emphasizing that each activity can at least post 
facto be rationalized as pursuing some purpose. We have chosen the word 
activity, however, because our layers must decide when to act for themselves, 
not be some subroutine to be invoked at the beck and call of some other layer. 
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The advantage of this approach is that it gives an incremental path from very 
simple systems to complex autonomous intelligent systems. At each step of the 
way it is only necessary to build one small piece, and interface it to an existing, 
working, complete intelligence. 

The idea is to first build a very simple complete autonomous system, and test 

it in the real world. Our favourite example of such a system is a Creature, 
actually a mobile robot, which avoids hitting things. It senses objects in its 
immediate vicinity and moves away from them, halting if it senses something in 
its path. It is still necessary to build this system by decomposing it into parts, 
but there need be no clear distinction between a "perception subsystem", a 
"central system" and an "action system". In fact, there may well be two 
independent channels connecting sensing to action (one for initiating motion, 
and one for emergency halts), so there is no single place where "perception" 
delivers a representation of the world in the traditional sense. 

Next we build an incremental layer of intelligence which operates in parallel 
to the first system. It is pasted on to the existing debugged system and tested 
again in the real world. This new layer might directly access the sensors and 
run a different algorithm on the delivered data. The first-level autonomous 
system continues to run in parallel, and unaware of the existence of the second 
level. For example, in [3] we reported on building a first layer of control which 
let the Creature avoid objects and then adding a layer which instilled an 
activity of trying to visit distant visible places. The second layer injected 
commands to the motor control part of the first layer directing the robot 
towards the goal, but independently the first layer would cause the robot to 
veer away from previously unseen obstacles. The second layer monitored the 
progress of the Creature and sent updated motor commands, thus achieving its 
goal without being explicitly aware of obstacles, which had been handled by 
the lower level of control. 

5. Who has the representations? 

With multiple layers, the notion of perception delivering a description of the 
world gets blurred even more as the part of the system doing perception is 
spread out over many pieces which are not particularly connected by data paths 
or related by function. Certainly there is no identifiable place where the 
"output" of perception can be found. Furthermore, totally different sorts of 
processing of the sensor data proceed independently and in parallel, each 
affecting the overall system activity through quite different channels of control. 

In fact, not by design, but rather by observation we note that a common 
theme in the ways in which our layered and distributed approach helps our 
Creatures meet our goals is that there is no central representation. 
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• Low-level simple activities can instill the Creature with reactions to 
dangerous or important changes in its environment.  Without complex 
representations and the need to maintain those representations and reason 
about them, these reactions can easily be made quick enough to serve 
their purpose. The key idea is to sense the environment often, and so have 
an up-to-date idea of what is happening in the world. 

• By having multiple parallel activities, and by removing the idea of a 
central representation, there is less chance that any given change in the 
class of properties enjoyed by the world can cause total collapse of the 
system. Rather  one might expect that a given change will at most 
incapacitate some but not all of the levels of control. Gradually as a more 
alien world is entered (alien in the sense that the properties it holds are 
different from the properties of the world in which the individual layers 
were debugged), the performance of the Creature might continue to 
degrade. By not trying to have an analogous model of the world, centrally 
located in the system, we are less likely to have built in a dependence on 
that model being completely accurate. Rather,  individual layers extract 
only those aspects [1] of the world which they find relevant--project ions of 
a representation into a simple subspace, if you like. Changes in the 
fundamental structure of the world have less chance of being reflected in 
every one of those projections than they would have of showing up as a 
difficulty in matching some query to a central single world model. 

• Each layer of control can be thought of as having its own implicit purpose 
(or goal if you insist). Since they are active layers, running in parallel and 
with access to sensors, they can monitor the environment and decide on 
the appropriateness of their goals. Sometimes goals can be abandoned 
when circumstances seem unpromising, and other times fortuitous circum- 
stances can be taken advantage of. The key idea here is to be using the 
world as its own model and to continuously match the preconditions of 
each goal against the real world. Because there is separate hardware for 
each layer we can match as many goals as can exist in parallel, and do not 
pay any price for higher numbers of goals as we would if we tried to add 
more and more sophistication to a single processor, or even some multi- 
processor with a capacity-bounded network. 

• The purpose of the Creature is implicit in its higher-level purposes, goals 
or layers. There need be no explicit representation of goals that some 
central (or distributed) process selects from to decide what is most 
appropriate for the Creature to do next. 

5.1. No representation versus no central representation 

Just as there is no central representation there is not even a central system. 
Each activity producing layer connects perception to action directly. It is only 
the observer of the Creature who imputes a central representation or central 
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control. The Creature itself has none; it is a collection of competing behaviors. 
Out of the local chaos of their interactions there emerges, in the eye of an 
observer,  a coherent  pattern of behavior. There is no central purposeful locus 
of control. Minsky [10] gives a similar account of how human behavior is 

generated. 
Note carefully that we are not claiming that chaos is a necessary ingredient 

of intelligent behavior. Indeed, we advocate careful engineering of all the 
interactions within the system (evolution had the luxury of incredibly long time 
scales and enormous numbers of individual experiments and thus perhaps was 

able to do without this careful engineering). 
We do claim however,  that there need be no explicit representation of either 

the world or the intentions of the system to generate intelligent behaviors for a 
Creature.  Without such explicit representations, and when viewed locally, the 
interactions may indeed seem chaotic and without purpose. 

I claim there is more than this, however. Even at a local level we do not 
have traditional AI representations. We never use tokens which have any 
semantics that can be attached to them. The best that can be said in our 
implementation is that one number is passed from a process to another. But it 
is only by looking at the state of both the first and second processes that that 
number can be given any interpretation at all. An extremist might say that we 
really do have representations, but that they are just implicit. With an 
appropriate mapping of the complete system and its state to another domain, 
we could define a representation that these numbers and topological connec- 
tions between processes somehow encode. 

However  we are not happy with calling such things a representation. They 

differ from standard representations in too many ways. 
There are no variables (e.g. see [1] for a more thorough treatment of this) 

that need instantiation in reasoning processes. There are no rules which need 
to be selected through pattern matching. There  are no choices to be made. To 
a large extent the state of the world determines the action of the Creature.  
Simon [14] noted that the complexity of behavior of a system was not 
necessarily inherent in the complexity of the creature,  but perhaps in the 
complexity of the environment.  He made this analysis in his description of an 
Ant wandering the beach, but ignored its implications in the next paragraph 
when he talked about humans. We hypothesize (following Agre and Chapman) 
that much of even human level activity is similarly a reflection of the world 
through very simple mechanisms without detailed representations. 

6. The methodology in practice 

In order  to build systems based on an activity decomposition so that they are 
truly robust we must rigorously follow a careful methodology. 
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6.1. Methodological maxims 

First, it is vitally important to test the Creatures we build in the real world; 
i.e., in the same world that we humans inhabit. It is disastrous to fall into the 
temptation of testing them in a simplified world first, even with the best 
intentions of later transferring activity to an unsimplified world. With a 
simplified world (matte painted walls, rectangular vertices everywhere, colored 
blocks as the only obstacles) it is very easy to accidentally build a submodule of 
the system which happens to rely on some of those simplified properties. This 
reliance can then easily be reflected in the requirements on the interfaces 
between that submodule and others. The disease spreads and the complete 
system depends in a subtle way on the simplified world. When it comes time to 
move to the unsimplified world, we gradually and painfully realize that every 
piece of the system must be rebuilt. Worse than that we may need to rethink 
the total design as the issues may change completely. We are not so concerned 
that it might be dangerous to test simplified Creatures first and later add more 
sophisticated layers of control because evolution has been successful using this 
approach. 

Second, as each layer is built it must be tested extensively in the real world. 
The system must interact with the real world over extended periods. Its 
behavior must be observed and be carefully and thoroughly debugged. When a 
second layer is added to an existing layer there are three potential sources of 
bugs: the first layer, the second layer, or the interaction of the two layers. 
Eliminating the first of these source of bugs as a possibility makes finding bugs 
much easier. Furthermore, there is only one thing possible to vary in order to 
fix the bugs--the second layer. 

6.2. An instantiation of the methodology 

We have built a series of four robots based on the methodology of task 
decomposition. They all operate in an unconstrained dynamic world (labora- 
tory and office areas in the MIT Artificial Intelligence Laboratory). They 
successfully operate with people walking by, people deliberately trying to 
confuse them, and people just standing by watching them. All four robots are 
Creatures in the sense that on power-up they exist in the world and interact 
with it, pursuing multiple goals determined by their control layers implement- 
ing different activities. This is in contrast to other mobile robots that are given 
programs or plans to follow for a specific mission. 

The four robots are shown in Fig. 1. Two are identical, so there are really 
three designs. One uses an offboard LISP machine for most of its computations, 
two use onboard combinational networks, and one uses a custom onboard 
parallel processor. All the robots implement the same abstract architecture, 
which we call the subsumption architecture, which embodies the fundamental 
ideas of decomposition into layers of task achieving behaviors, and incremental 
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Fig. 1. The four MIT AI laboratory Mobots. Left-most is the first built Allen, which relies on an 
offboard LISP machine for computation support. The right-most one is Herbert, shown with a 24 
node CMOS parallel processor surrounding its girth. New sensors and fast early vision processors 
are still to be built and installed. In the middle are Tom and Jerry, based on a commercial toy 

chassis, with single PALs (Programmable Array of Logic) as their controllers. 

compos i t ion  th rough  debugging  in the real world. Details  of  these implementa-  

tions can be found  in [3]. 

Each  layer in the subsumpt ion  archi tecture is composed  of  a f ixed- topology 

ne twork  of  simple finite state machines.  Each  finite state machine  has a handful  

of  states, one  or  two internal  registers, one  or  two internal  t imers,  and access 

to simple computa t iona l  machines ,  which can compu te  things such as vector  

sums. The  finite state machines  run asynchronous ly ,  sending and receiving 

fixed length messages (1-bit messages  on the two small robots ,  and 24-bit 

messages on the larger ones) over  wires. O n  our  first robo t  these were virtual 

wires; on our  later robots  we have used physical wires to connec t  computa t ion-  

al componen t s .  

There  is no central  locus of  control .  Ra ther ,  the finite state machines  are 

data-dr iven by the messages they receive. The  arrival of  messages or  the 

expirat ion of  designated t ime per iods  cause the finite state machines  to change  

state. The  finite state machines  have access to the contents  of  the messages and 
might  ou tpu t  them,  test t hem with a predicate  and condit ional ly b ranch  to a 

different  state, or  pass them to simple computa t ion  elements .  There  is no  

possibility of  access to global data ,  nor  of  dynamical ly  established communica -  
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tions links. There is thus no possibility of global control. All finite state 

machines are equal, yet at the same time they are prisoners of their fixed 
topology connections. 

Layers are combined through mechanisms we call suppression (whence the 

name subsumption architecture) and inhibition. In both cases as a new layer is 

added, one of the new wires is side-tapped into an existing wire. A pre-defined 
time constant is associated with each side-tap. In the case of suppression the 

side-tapping occurs on the input side of a finite state machine. If  a message 

arrives on the net wire it is directed to the input port of the finite state machine 

as though it had arrived on the existing wire. Additionally, any new messages 

on the existing wire are suppressed (i.e.,  rejected) for the specified time 

period. For inhibition the side-tapping occurs on the output  side of a finite 

state machine. A message on the new wire simply inhibits messages being 
emitted on the existing wire for the specified time period. Unlike suppression 

the new message is not delivered in their place. 

As an example,  consider the three layers of Fig. 2. These are three layers of 
control that we have run on our first mobile robot for well over  a year. The 

robot has a ring of twelve ultrasonic sonars as its primary sensors. Every 

second these sonars are run to give twelve radial depth measurements .  Sonar is 

robot 
I busy 

o 
x integral 

_ _ ~  startlook _ [ look [-" [ ~ _ [ p a t h p l a n ~ ]  

. . . .  heading 

i '~-- '-~ V I encoders _ _  
~t~ ]wander ~ I t 
° , avoid  hoadiog I Ihus  

. . . . . . . . .  I '  ' l  

Fig. 2. We wire finite state machines together into layers of control. Each layer is built on top of 
existing layers. Lower level layers never rely on the existence of higher level layers. 
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extremely noisy due to many objects being mirrors to sonar. There  are thus 
problems with specular reflection and return paths following multiple reflec- 
tions due to surface skimming with low angles of incidence (less than thirty 

degrees). 
In more detail the three layers work as follows: 

(1) The lowest-level layer implements a behavior which makes the robot 
(the physical embodiment  of the Creature) avoid hitting objects. It both avoids 
static objects and moving objects, even those that are actively attacking it. The 
finite state machine labelled sonar simply runs the sonar devices and every 
second emits an instantaneous map with the readings converted to polar 

coordinates. This map is passed on to the collide and feelforce finite state 
machine. The first of these simply watches to see if there is anything dead 
ahead, and if so sends a halt message to the finite state machine in charge of 
running the robot forwards-- i f  that finite state machine is not in the correct 
state the message may well be ignored. Simultaneously, the other finite state 
machine computes a repulsive force on the robot,  based on an inverse square 
law, where each sonar return is considered to indicate the presence of a 
repulsive object. The contributions from each sonar are added to produce an 
overall force acting on the robot. The output is passed to the runaway machine 
which thresholds it and passes it on to the turn machine which orients the robot 
directly away from the summed repulsive force. Finally, the forward machine 
drives the robot forward. Whenever  this machine receives a halt message while 
the robot is driving forward, it commands the robot to halt. 

This network of finite state machines generates behaviors which let the robot 
avoid objects. If it starts in the middle of an empty room it simply sits there. If 
someone walks up to it, the robot moves away. If it moves in the direction of 
other  obstacles it halts. Overall, it manages to exist in a dynamic environment 
without hitting or being hit by objects. 

(2) The next layer makes the robot wander about, when not busy avoiding 
objects. The wander finite state machine generates a random heading for the 
robot every ten seconds or so. The avoid machine treats that heading as an 
attractive force and sums it with the repulsive force computed from the sonars. 
It uses the result to suppress the lower-level behavior, forcing the robot to 
move in a direction close to what wander decided but at the same time avoid 
any obstacles. Note that if the turn and forward finite state machines are busy 
running the robot the new impulse to wander will be ignored. 

(3) The third layer makes the robot try to explore. It looks for distant 
places, then tries to reach them. This layer suppresses the wander layer, and 
observes how the bottom layer diverts the robot due to obstacles (perhaps 
dynamic). It corrects for any divergences and the robot achieves the goal. 

The whenlook finite state machine notices when the robot is not busy 
moving, and starts up the free space finder (labelled stereo in the diagram) 
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finite state machine. At the same time it inhibits wandering behavior so that 
the observation will remain valid. When a path is observed it is sent to the 
pathplan finite state machine, which injects a commanded direction to the 
avoid finite state machine. In this way, lower-level obstacle avoidance con- 
tinues to function. This may cause the robot to go in a direction different to 
that desired by pathplan. For that reason the actual path of the robot is 
monitored by the integrate finite state machine, which sends updated estimates 
to the pathplan machine. This machine then acts as a difference engine forcing 
the robot in the desired direction and compensating for the actual path of the 
robot as it avoids obstacles. 

These particular layers were implemented on our first robot. See [3] for 
more details. Brooks and Connell [5] report  on another three layers im- 
plemented on that particular robot. 

7. What  this is not 

The subsumption architecture with its network of simple machines is reminis- 
cent, at the surface level at least, with a number of mechanistic approaches to 
intelligence, such as connectionism and neural networks. But it is different in 
many respects for these endeavors,  and also quite different from many other 
post-Dartmouth traditions in artificial intelligence. We very briefly explain 
those differences in the following sections. 

7.1. It isn't connectionism 

Connectionists try to make networks of simple processors. In that regard, 
the things they build (in simulation on ly- -no  connectionist has ever driven a 
real robot in a real environment,  no matter  how simple) are similar to the 
subsumption networks we build. However ,  their processing nodes tend to be 
uniform and they are looking (as their name suggests) for revelations from 
understanding how to connect them correctly (which is usually assumed to 
mean richly at least). Our nodes are all unique finite state machines and the 
density of connections is very much lower, certainly not uniform, and very low 
indeed between layers. Additionally, connectionists seem to be looking for 
explicit distributed representations to spontaneously arise from their networks. 
We harbor no such hopes because we believe representations are not necessary 
and appear only in the eye or mind of the observer. 

7.2. It isn't neural networks 

Neural networks is the parent discipline of which connectionism is a recent 
incarnation. Workers in neural networks claim that there is some biological 
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significance to their network nodes, as models of neurons. Most of the models 
seem wildly implausible given the paucity of modeled connections relative to 
the thousands found in real neurons. We claim no biological significance in our 
choice of finite state machines as network nodes. 

7.3. It isn't production rules 

Each individual activity producing layer of our architecture could be viewed 
as an implementation of a production rule. When the right conditions are met 
in the environment a certain action will be performed. We feel that analogy is a 
little like saying that any FORTRAN program with IF statements is implementing 
a production rule system. A standard production system really is more-- i t  has 
a rule base, from which a rule is selected based on matching preconditions of 
all the rules to some database. The preconditions may include variables which 
must be matched to individuals in the database. Our layers run in parallel and 
have no variables or need for matching. Instead, aspects of the world are 
extracted and these directly trigger or modify certain behaviors of the layer. 

7.4. It isn't a blackboard 

If one really wanted, one could make an analogy of our networks to a 
blackboard control architecture. Some of the finite state machines would be 
localized knowledge sources. Others would be processes acting on these 
knowledge sources by finding them on the blackboard. There is a simplifying 
point in our architecture however: all the processes know exactly where to look 
on the blackboard as they are hard-wired to the correct place. I think this 
forced analogy indicates its own weakness. There is no flexibility at all on 
where a process can gather appropriate knowledge. Most advanced blackboard 
architectures make heavy use of the general sharing and availability of almost 
all knowledge. Furthermore, in spirit at least, blackboard systems tend to hide 
from a consumer of knowledge who the particular producer was. This is the 
primary means of abstraction in blackboard systems. In our system we make 
such connections explicit and permanent. 

7.5. It isn't German philosophy 

In some circles much credence is given to Heidegger as one who understood 
the dynamics of existence. Our approach has certain similarities to work 
inspired by this German philosopher (e.g. [1]) but our work was not so 
inspired. It is based purely on engineering considerations. That does not 
preclude it from being used in philosophical debate as an example on any side 
of any fence, however. 
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8. Limits to growth 

Since our approach is a performance-based one, it is the performance of the 
systems we build which must be used to measure its usefulness and to point to 
its limitations. 

We claim that as of mid-1987 our robots, using the subsumption architecture 
to implement complete Creatures, are the most reactive real-time mobile 
robots in existence. Most other  mobile robots are still at the stage of individual 
"experimental  runs" in static environments,  or at best in completely mapped 
static environments. Ours, on the other hand, operate completely autonomous- 
ly in complex dynamic environments at the flick of their on switches, and 
continue until their batteries are drained. We believe they operate at a level 
closer to simple insect level intelligence than to bacteria level intelligence. Our 
goal (worth nothing if we don' t  deliver) is simple insect level intelligence within 
two years. Evolution took 3 billion years to get from single cells to insects, and 
only another 500 million years from there to humans. This statement is not 
intended as a prediction of our future performance,  but rather to indicate the 
nontrivial nature of insect level intelligence. 

Despite this good performance to date, there are a number of serious 
questions about our approach. We have beliefs and hopes about how these 
questions will be resolved, but under our criteria only performance truly 
counts. Experiments and building more complex systems take time, so with the 
caveat that the experiments described below have not yet been performed we 
outline how we currently see our endeavor progressing. Our intent in discus- 
sing this is to indicate that there is at least a plausible path forward to more 
intelligent machines from our current situation. 

Our belief is that the sorts of activity producing layers of control we are 
developing (mobility, vision and survival related tasks) are necessary prerequis- 
ites for higher-level intelligence in the style we attribute to human beings. 

The most natural and serious questions concerning limits of our approach 
are: 

• How many layers can be built in the subsumption architecture before the 
interactions between layers become too complex to continue? 

• How complex can the behaviors be that are developed without the aid of 
central representations? 

• Can higher-level functions such as learning occur in these fixed topology 
networks of simple finite state machines? 

We outline our current thoughts on these questions. 

8. I. How many layers? 

The highest number  of layers we have run on a physical robot is three. In 
simulation we have run six parallel layers. The technique of completely 
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debugging the robot on all existing activity producing layers before designing 
and adding a new one seems to have been practical till now at least. 

8.2. How complex? 

We are currently working towards a complex behavior pattern on our fourth 
robot which will require approximately fourteen individual activity producing 
layers. 

The robot has infrared proximity sensors for local obstacle avoidance. It has 
an onboard manipulator which can grasp objects at ground and table-top 
levels, and also determine their rough weight. The hand has depth sensors 
mounted on it so that homing in on a target object in order to grasp it can be 
controlled directly. We are currently working on a structured light laser 
scanner to determine rough depth maps in the forward looking direction from 

the robot. 
The high-level behavior we are trying to instill in this Creature is to wander 

around the office areas of our laboratory, find open office doors, enter, retrieve 
empty soda cans from cluttered desks in crowded offices and return them to a 
central repository. 

In order to achieve this overall behavior a number of simpler task achieving 
behaviors are necessary. They include: avoiding objects, following walls, 
recognizing doorways and going through them, aligning on learned landmarks, 
heading in a homeward direction, learning homeward bearings at landmarks 
and following them, locating table-like objects, approaching such objects, 
scanning table tops for cylindrical objects of roughly the height of a soda can, 
serving the manipulator arm, moving the hand above sensed objects, using the 
hand sensor to look for objects of soda can size sticking up from a background, 
grasping objects if they are light enough, and depositing objects. 

The individual tasks need not be coordinated by any central controller. 
Instead they can index off of the state of the world. For instance the grasp 
behavior can cause the manipulator to grasp any object of the appropriate size 
seen by the hand sensors. The robot will not randomly grasp just any object 
however, because it will only be when other layers or behaviors have noticed 
an object of roughly the right shape on top of a table-like object that the 
grasping behavior will find itself in a position where its sensing of the world 
tells it to react. If, from above, the object no longer looks like a soda can, the 
grasp reflex will not happen and other lower-level behaviors will cause the 
robot to look elsewhere for new candidates. 

8.3. Is learning and such possible? 

Some insects demonstrate a simple type of learning that has been dubbed 
"learning by instinct" [7]. It is hypothesized that honey bees for example are 
pre-wired to learn how to distinguish certain classes of flowers, and to learn 
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routes to and from a home hive and sources of nectar. Other  insects, 
butterflies, have been shown to be able to learn to distinguish flowers, but in an 
information limited way [8]. If they are forced to learn aout a second sort of 
flower, they forget what they already knew about the first, in a manner that 
suggests the total amount  of information which they know, remains constant. 

We have found a way to build fixed topology networks of our finite state 
machines which can perform learning, as an isolated subsystem, at levels 
comparable to these examples. At the moment  of course we are in the very 
position we lambasted most AI workers for earlier in this paper. We have an 

isolated module of a system working, and the inputs and outputs have been left 
dangling. 

We are working to remedy this situation, but experimental work with 
physical Creatures is a nontrivial and time consuming activity. We find that 
almost any pre-designed piece of equipment or software has so many preconcep- 
tions of how they are to be used built in to them, that they are not flexible 
enough to be a part of our complete systems. Thus, as of mid-1987, our work 
in learning is held up by the need to build a new sort of video camera and 
high-speed low-power processing box to run specially developed vision al- 
gorithms at 10 frames per second. Each of these steps is a significant engineer- 
ing endeavor which we are undertaking as fast as resources permit. 

Of course, talk is cheap. 

8.4. Tke fumre 

Only experiments with real Creatures in real worlds can answer the natural 
doubts about our approach. Time will tell. 
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